Year 10 Chemistry

Revision Materials for February Exams 2017

(made using pages taken from old Bangor Revision Guides)

This material contains both Higher and Foundation Tier content - check with your teacher if you are unsure if you should revise certain sections.

Elements

The Periodic Table - Basics

Group
There are eight groups

Elements change from being metals to non-metals on going from left to right across the Periodic Table
Many elements in Group 3, 4, 5 show metallic and non-metallic properties

Compounds

 Substance that contains two or more elements joined together chemically

Compound	Formula	No. of elements	No. of atoms
Sodium Chloride	NaCl	2	$2(1 \mathrm{Na}, 1 \mathrm{Cl})$
Sodium Hydroxide	NaOH	3	$3(1 \mathrm{Na}, 1 \mathrm{O}, 1 \mathrm{H})$
Sodium Oxide	$\mathrm{Na}_{2} \mathrm{O}$	2	$3(2 \mathrm{Na}, 1 \mathrm{O})$
Sodium Sulfate	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	3	$7(2 \mathrm{Na}, 1 \mathrm{~S}, 4 \mathrm{O})$
Calcium Carbonate	CaCO_{3}	3	$5(1 \mathrm{Ca}, 1 \mathrm{C}, 3 \mathrm{O})$

Chemical Reactions

Atoms are rearranged but none are created or destroyed
e.g.

$\mathrm{Mg}+\quad 2 \mathrm{HCl}$

Same number of atoms in reactants and products, atoms are differently arranged.

Atoms contain a nucleus and electrons

The small central nucleus is made from protons and neutrons.
Around these are orbits (shells) of electrons.

Here is a diagram showing an atom of Lithium

This diagram shows that a piece of Potassium is made up of millions of the same atom.

Atoms of different elements are different.
The number of protons is always different with different elements.

Element	Lithium	Potassium
Protons	$\mathbf{3}$	$\mathbf{1 9}$
Neutrons	4	20
Electrons	3	19

Neutron number for some elements are the same.
Electron number can be the same when the atoms have bonded.

Atoms have no charge.
The number of protons (in the nucleus) is always the same as the number of electrons (in shells)

Protons are positively charged. (+)
Electrons are negatively charged (-)
Neutrons do not have a charge (0)

Therefore an atom of lithium has no charge $:-+3 p+-3 e=0 \quad$ no charge

Ion has uneven number of protons and electrons

This happens when an electron is lost
Or when an electron is gained
The proton number does not change.

Mass and Charge of atoms
Here are the relative mass of each particle and their electric charge.

	mass	charge
proton	1	+1
electron	0	-1
neutron	1	0

Protons and neutrons have similar mass.
Electrons have no mass, or extremely little amount.

Atomic Structure

Atomic Number

${ }_{6}^{6}$ Li
Number on the bottom which means the number of protons or electrons
The number increases across the periodic table

```
Mass Number
```

O̧, Li

Number on the top which means the number of protons and neutrons in the nucleus.

Neutron Number

The number of neutrons in an atom is worked out by subtracting the number of protons (Atomic number) from the Mass number.

Metals		Physical Properties			Non-Metals
$\otimes-$	Conduct Electricity			Does not conduct Electricitv	\geq
	Conduct Heat High Melting point Boiling point			Does not conduct heat Low Melting point Boiling point	
	Malleable	Can be hammered into sheets		malleable	8
	Ductile	Can be pulled into wires	Not ductile		

They react with oxygen and water.

[^0]Use safety goggles
Use a small piece of metal in the water
Use tongs to hold the metal

They react with group 1 metals and salts

> Use safety goggles
> Use a fume cupboard Use plastic gloves

Metal	Flame test
Lithium	Red
Sodium	Yellow-orange
Potassium	Lilac

Non- metal	Silver Nitrate test
Chloride	white
Bromide	cream
lodide	yellow

Barium Apple green
Calcium Brick red

Higher Tier: Silver Nitrate ionic equation:
e.e. $\mathrm{Ag}^{+}(\mathrm{aq})+$
$\mathrm{Cl}^{-}(\mathrm{aq})$

$\mathrm{AgCl}(\mathrm{s})$

Atomic Spectroscopy (Higher Tier): This method is used to identify and show the amount (concentration) of specific atoms/ions present in the sample.


```
Higher Tier
```


Every atom has different mass. This is determined by the number of protons and neutrons in the nucleus.

A lithium atom has a mass of 7 .

$$
3 \text { protons and } 4 \text { neutrons }
$$

Relative atomic mass $\left(A_{r}\right)$ is a way of saying how heavy different atoms are compared to each other.

The $\mathbf{A}_{\mathbf{r}}$ of Lithium is 7 and that of Carbon is 12 . We use the top number to determine this; this is called the mass number

Relative formula mass or relative molecular mass ($\mathbf{M}_{\mathbf{r}}$) is the mass for a compound (e.g. MgCl_{2}) so the masses for each element are

Mass numbers \longrightarrow| $\mathbf{M g ~ C I ~ C I ~}$ |
| :--- |
| $24+35+35$ |$=94$

What is the molecular mass of ammonium sulphate $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$?
($\mathrm{N}=14, \mathrm{~S}=32, \mathrm{O}=16, \mathrm{H}=1$)
Calculate $\left(\mathrm{NH}_{4}\right)_{2}$ first

$$
=14+1+1+1+1=18 \times 2=36
$$

$S=32$
4 oxygen atoms $16 \times 4=64$
$M r=132$

Calculating \% composition

After calculating M_{r} it is possible to calculate \% composition, this shows how much of a specific element is in a compound in percentage form
e.g. $\% \mathrm{Mg}$ in $\mathrm{MgCl}_{2}=\frac{\text { total } \mathrm{M}_{r} \text { of } \mathrm{Mg} \text { in } \mathrm{MgCl}_{2} \times 100}{\mathrm{M}_{\mathrm{r}} \mathrm{MgCl}_{2}}$

$$
\frac{24}{94} \times 100=25.5 \%
$$

Calculating the Relative Atomic Mass of an Element

Worked Example

Chlorine has two isotopes: chlorine- 35 and chlorine- 37
A typical sample of chlorine will be 75% chlorine- 35 atoms and 25% chlorine- 37 atoms.
The relative atomic mass is calculated as follows:
Total mass of 100 atoms $=(75 \times 35)+(25 \times 37)=3550$
Mean mass of one atom $=(3550 \div 100)=35.5$
A_{r} of chlorine is 35.5

Worked Example 2

Most elements have isotopes and hence their relative atomic masses will not be a whole number. However, for the sake of simplicity, most relative atomic masses quoted in the Periodic Table are given to the nearest whole number

The isotopes of magnesium and their percentage abundances are:
Magnesium- 24 78.6\%; magnesium-25 10.1\%; magnesium-26 11.3\%
Total mass of 100 atoms $=(78.6 \times 24)+(10.1 \times 25)+(11.3 \times 26)=2432.7$
Mean mass of one atom $=(2432.7 \div 100)=24.327$
A_{t} of magnesium is $\mathbf{2 4 . 3}$ (to one decimal place)

The mole

The mole is a measure of the amount of substance.
One mole (1 mol) is the amount of substance that contains 6×10^{23} particles (atoms, molecules, or formulae) of the substance.
6×10^{23} is known as the Avogadro number.
For example:
1 mol of sodium (Na) contains 6×10^{23} atoms of sodium
1 mol of hydrogen $\left(\mathrm{H}_{2}\right)$ contains 6×10^{23} molecules of hydrogen
1 mol of sodium chloride (NaCl) contains 6×10^{23} formulae of sodium chloride

Calculating the mass of one mole

The mass of one mole of atoms is easily calculated. It is simply the relative atomic mass $\left(A_{\mathrm{I}}\right)$ expressed in grams.

Worked Examples

Element	5×181801		Massoish nole of tatons
Hydrogen	H	1	1 g
Carbon	C	12	12 g
Oxygen	0	16	16 g
Sodium	Na	23	23 g
Chlorine	Cl	35.5	35.5 g

Calculating Reacting Masses

By using relative atomic masses and (Ar) and relative molecular masses (Mr) it is possible to calculate how much of a product is produced or how much reactants are needed.
e.g. (product calculation)

What is the mass of magnesium oxide is produced when 60 g of magnesium is burned in air?

Symbol Equation

e.g. (reactant calculation)

What is the mass of magnesium needed to produce 90 g of magnesium oxide?

	$\mathbf{2 M g}+\mathrm{O}_{2}$	\rightarrow
	$\mathbf{2 M g O}$	
$\mathrm{Mr}=$	2×24	$2(24+16)$
	48	80
Therefore	48 g (or tonnes)	will produce 80 g
Or	80 g of MgO will be produced with 48 g of Mg	
	1 g	$48 \div 80=0.6 \mathrm{~g}$
	90 g	will produce $90 \times 0.6=54 \mathrm{~g}$

Determining the formula of a compound from experimental data

When 4 g of copper oxide is reduced in a steam of hydrogen, 3.2 g of copper remains.

1. Work out how much oxygen was contained in the compound

$$
4-3.2=0.8 \mathrm{~g}
$$

	Cu	O
Divide with Ar	3.2	0.8
Divide with smallest	0.05	16
Whole number	0.05	0.05
	1	1 Cu

$$
\text { Formula }=\mathrm{CuO}
$$

Example 2

Find the formula of iron oxide produced when 44.8 g of iron react with 19.2 g of oxygen. ($\mathrm{Ar} \mathrm{Fe}=56$ and $\mathrm{O}=16$)
Fe
Mass
44.8
0
Mas
$44.8 \div 56$
$19.2 \div 16$
Divide with Ar
1.2
Divide with the smallest value
$0.8 \div 0.8$
$1.2 \div 0.8$
1
1.5

A formula must have whole numbers therefore

2
3
Formula $=\mathrm{Fe}_{2} \mathrm{O}_{3}$

Calculating reactants or product masses

Reactants				Products		
	NaOH		HCl	NaCl	+	$\mathrm{H}_{2} \mathrm{O}$
	$23+16+1$		$1+35$	$23+35$		1+1+16
	40		36	58		18
		76				
Units						

Calculating the percentage yield

When we want to create a chemical, the aim is to work carefully and to produce the maximum amount possible.

The amount formed or yield is calculated in percentage. It is very unlikely that 100% yield will be achieved e.g. some might be stuck in filter paper, evaporating dish, the product might react with the air.

Example

Magnesium metal dissolves in hydrochloric acid to form magnesium chloride.
$\mathbf{M g}_{(\mathrm{s})} \quad+2 \mathrm{HCl}_{(\mathrm{aq})} \quad \mathbf{M g C l}_{2(\mathrm{qq})} \quad+\quad \mathbf{H}_{2(\mathrm{~g})}$

24g
95g
$(24+35.5+35.5)$
(a) What is the maximum theoretical mass of magnesium chloride which can be made from 12 g of magnesium?

12g
$95 / 2=47.5 \mathrm{~g}$
(b) If only 47.0 g of purified magnesium chloride was obtained after crystallising the salt from the solution, what is the \% yield of the salt preparation?

$$
\begin{array}{ll}
\% \text { yield }= & \frac{\text { actual amount obtained } \times 100}{\text { maximum possible }} \\
\% \text { yield }= & \frac{47.0 \times 100}{47.5}=\mathbf{9 8 . 9 \%} \text { (to } 1 \text { decimal place) }
\end{array}
$$

Water

Water is necessary for life to exist. The quality of life depends on the availability of clean water. Water in this country is made drinkable by treating rainwater.

Here are the steps involved in making water drinkable.

Fluoride ions are added to water to strengthen children's teeth in some areas.
Fluoride is not added to water supplies in Wales.

Water

Water Preservation

Although there is ample water on Earth, only a very small fraction is safe for drinking. With an increasing population and developing industry our need for water is larger than ever.

The need for water

Water is needed in factories for cooling machinery

Hygiene - We need water to keep clean and wash clothes

We use 150 litres of water each on average every day. The water comes from natural underwater storage, rivers and different reservoirs. During dry conditions when there is not enough rain there is a strain on the water supply - areas will experience drought.

Shortage of water problems arise when there is more demand than supply of water, which is a threat to life and the environment. Water cost may increase if future climate changes cause shortage of water in the UK. Using less water in the future is very important.

Here are some ways of decreasing our use of water.

- Use washing machines and dish washers only when they are full.
- Having a shower instead of a bath.
- Use waste water for plants and to wash the car.
- Repair dripping taps.
- Do not allow the water to run excessively (e.g. when brushing teeth)

Fluoridation of tap water

There is a difference of opinion for the addition of fluoride to water supplies.
Scientific studies show that its addition helps strengthen children's teeth from decay (there are reduced number of fillings in areas that have extra fluoride added)

The problems;
(1) high concentrations of fluoride can be poisonous and may cause cancer (bone and teeth).
(2) It can cause discolouring or decay of teeth (fluorosis) and
(3) it can cause infertility.
(4) Some people oppose it because they feel it is not right to force everyone to consume fluoride without the individual's consent.

Collecting evidence

Questionnaire - data of the state of children's teeth are collected by counting the number of fillings, loss of teeth and decayed teeth children of all ages have.

The data is reliable because all the children of the school are tested with exception of absent pupils.

The comparison of areas which have been fluoridated with unfluoridated areas can be unfair without the consideration to other factors (e.g. social and economic) which are important for those areas.

Fluoride is normally in toothpaste, mouthwash and sometimes it is added to special milk

Desalination - It is possible to desalinate sea water to supply drinking water.

To desalinate sea water distillation of sea water by boiling is used. Boiling uses large amounts of energy which is costly. Due to this the process is not viable in many parts of the world.

If a country is to use desaliantion they need to ensure

- a renewable means of creating heat energy where no carbon dioxde is created (greenhouse effect)
- sea nearby.

Distillation - Separating water and miscible liquids.

Pure liquids have specific boiling points, e.g. water boils ar $100^{\circ} \mathrm{C}$. Ethanol boils at $78^{\circ} \mathrm{C}$. Water and ethanol are miscible (when two liquids mix together easily without separating into layers.)

If a mixture of miscible liquids exist it is possible to separate them by distilation. In a mixture of ethanol and water, the ethanol would boil and evaporate first (as it has the lower boiling point) leaving the water behind. The ethanol would condense on the cold wall of the condeser.

Chromatography

Pigments in ink can be separated using paper chromatography.

The most soluble substance will be transported furthest by the solvent.

Chromatography

The distance that a substance travels allows scientists to recognise a substance. $A m R_{f}$ value is calculated

e.g. The R_{f} value for ink $B=4 / 8=0.5$

Gas Chromatography (Higher Tier)
This method is very useful as it gives quantitative information -
that is the amount of substance present. Chemical analysts use the method to identify e.g. the amount of a pollutant in water or air, it is also used to identify the amount of an illegal drug in blood.

Types of drinking water.

Depending on the type of rocks a region has, water can be of two types :-
Hard water and Soft water
Hard Water Areas in England and Wales

Hard Water

If rainwater passes along limestone (calcium carbonate) rocks on its way to a reservoir, calcium ions Ca^{2+} will collect in the water. Other ions such as magnesium ions Mg^{2+} can also collect in water. These additional ions make the water hard.

Soap in hard water does not readily lather, scum is formed

Hardness in water is defined as difficulty in producing a lather with soap.

There are two types of hard water:
Temporary hard water and permanently hard water

Temporary hard water

Calcium and Magnesium hydrogen carbonates form temporary hard water because when this water is boiled, hardness is removed.

Hydrogen carbonates are decomposed.

Magnesium and Calcium become magnesium carbonate and calcium carbonate which are insoluble. This lime scale collects on kettles as 'fur'.

Permanently hard water

When insoluble calcium and magnesium sulfates or carbonate exists in water it is called permanently hard water.

Lime scale clogs up hot water pipe

Treating permanently hard water.

1. Adding sodium carbonate (washing soda).

sodium carbonate$+$calcium sulfate\longrightarrowcalcium carbonate$+$sodium sulfate	
	Calcium ions are removed as solid Calcium carbonate making the water softer

2. Ion exchange column

When hard water is passed along negatively charged particles within a container, the positive ions of magnesium and calcium in hard water are attracted and held there, they are replaced with sodium ions. Water leaves the container soft.

Advantages and Disadvantages of hard water
Advantages

1. Strengthens teeth
2. Reduces the risk of heart disease
3. Some people prefer the taste of hard water

Disadvantages

1. Lime scale on kettles make them less efficient at boiling water and therefore waste energy. Hot water pipes can also block up with lime scale.
2. Removing scale can be expensive.
3. More soap is needed with hard water.
4. Ion exchange water softeners release sodium ions which can be unsuitable for some uses.
5. Ion exchange units need to be 'cleaned' out of magnesium and calcium ions when it has filled up (usually with sodium chloride (salt))

Experiments to determine the amount of hardness of water.

A buret is the apparatus used to measure the amount of soap solution needed.

The amount of water to be tested is kept the same in the conical flask.

Soap solution is added every $1 \mathrm{~cm}^{3}$ to the water and the flask shaken to try and form lather (bubbles). When lather starts to form the soap solution is added every $0.5 \mathrm{~cm}^{3}$ until it stays permanently. The amount of soap solution can be determined using the buret.

Soft water lathers easily therefore little amount of soap solution is used.
Hard water lathers slowly therefore more soap solution is needed.

Experiment to determine if water is permanently hard or temporarily hard.

If two samples of water seem to be hard water from the above experiment, samples of both types of water could be boiled.

The same experiment as above could then be undertaken.
If the water is still difficult to lather then the water is permanently hard.

Solubility curves

Soluble solids dissolve more readily when heated.
Every solid has a different rate of solubility. The diagram below shows that potassium nitrate dissolved more readily than copper sulphate at any temperature above $0^{\circ} \mathrm{C}$.
e.g.

The amount of copper sulphate that dissolves at $40^{\circ} \mathrm{C}$ is 24 g in $100 \mathrm{~cm}^{3}$ water.
The amount of potassium nitrate that dissolves at $40^{\circ} \mathrm{C}$ is 60 g in $100 \mathrm{~cm}^{3}$ water.
Notice that the standard amount of water used is $100 \mathrm{~cm}^{3}$ or 100 g .
This graph shows the maximum amount of solid that will dissolve at any temperature.

A saturated solution is the maximum amount of solid that will dissolve at a particular temperature.

The amount of copper sulphate that dissolves at $60^{\circ} \mathrm{C}$ is 107 g in $100 \mathrm{~cm}^{3}$ water.
If a saturated solution of copper sulphate at $60^{\circ} \mathrm{C}$ was to cool down to $40^{\circ} \mathrm{C}$ not as much solid would be able to dissolve.

It is possible to work out how much less would dissolve by subtracting:
$107 \mathrm{~g}-60 \mathrm{~g}=\mathbf{4 7} \mathrm{g} \quad$ of solid would appear on the bottom of the beaker.
comparative solubility curves for copper (II) sulphate and potassium nitrate

POSITIVE IONS		NEGATIVE IONS	
Name	Formula	Name	Formula
Aluminium	Al^{3+}	Bromide	Br^{-}
Ammonium	NH_{4}^{+}	Carbonate	$\mathrm{CO}_{3}{ }^{\text {-- }}$
Barium	Ba^{2+}	Chloride	Cl^{-}
Calcium	Ca^{2+}	Fluoride	F^{-}
Copper(II)	Cu^{2+}	Hydroxide	OH^{-}
Hydrogen	\mathbf{H}^{+}	Iodide	I^{-}
Iron(II)	Fe^{2+}	Nitrate	$\mathrm{NO}_{3}{ }^{-}$
Iron(III)	Fe^{3+}	Oxide	O^{2-}
Lithium	Li^{+}	Sulphate	$\mathrm{SO}_{4}{ }^{\mathbf{2 -}}$
Magnesium	Mg ${ }^{\mathbf{+}}$		
Nickel	$\mathrm{Ni}^{\mathbf{2 +}}$		
Potassium	\mathbf{K}^{+}		
Silver	$\mathbf{A g}^{+}$		
Sodium	Na^{+}		

THE PERIODIC TABLE

$\underset{3}{L_{\text {Lithium }}^{7}}$	${ }^{9} \mathrm{Be}$ Beryllium 4					
$\begin{gathered} 39 \\ \mathrm{~K} \\ \text { Potassium } \\ 19 \end{gathered}$			$\begin{gathered} 48 \\ \substack{4 i \\ \text { Titanium } \\ 22} \end{gathered}$	$\begin{gathered} 51 \\ V \\ V \\ \text { Vanadium } \\ 23 \end{gathered}$		M
		$\begin{gathered} 89 \\ \mathrm{Y} \\ \text { Ytrium } \\ 39 \end{gathered}$	$\begin{gathered} 91 \\ \mathrm{Zr} \\ \text { Zirconium } \\ 40 \end{gathered}$	$\begin{gathered} 93 \\ \mathrm{Nb} \\ \begin{array}{c} \text { Niobium } \\ 41 \end{array} \end{gathered}$		T
	$\begin{gathered} 137 \\ \text { Ba } \\ \text { Barium } \\ 56 \end{gathered}$	$\begin{gathered} 139 \\ \mathrm{La} \\ \text { Lanthanum } \\ 57 \end{gathered}$	$\begin{gathered} 179 \\ \text { Hf } \\ \text { Hafnium } \\ 72 \end{gathered}$		$\begin{gathered} 184 \\ \text { Tungsten } \\ 74 \end{gathered}$	R

[^0]: Safety Precautions

